

# **2011** U.S. Pulse Quality Survey









NDSU NORTH DAKOTA STATE UNIVERSITY

## **Table of Contents**

| 2011 Overview                                      | 3  |
|----------------------------------------------------|----|
| Pulse Production                                   | 4  |
| Laboratory Analysis                                | 5  |
| Dry Pea Quality                                    | 6  |
| Lentil Quality                                     | 14 |
| Chickpea Quality                                   | 19 |
| Percentage Recommended Daily Allowance             | 22 |
| Authors, Technical Assistance,<br>Funding Support, | 00 |
| Acknowledgements, References                       | 23 |

# **2011 Overview**

USA grown pulses are an important component of the world's food supply and contribute to better human nutrition and health. While a significant portion of the pulses grown in the USA are consumed locally, the majority is exported to international markets. Because both the supply and demand of pulses are forecast to grow, quality information is vital to continued efforts by the US pulse industry to produce higher quality products. The US pulse quality survey provides data to aid growers in the production of high quality pulses, to aid processors and suppliers in assuring pulse guality, and to inform local and international consumers. The objectives of this report are to provide (1) proximate quality parameters (moisture, protein, total starch, soaking ability, starch properties, color, and canning quality) and (2) data on total micronutrients (iron, zinc, calcium, magnesium, potassium, selenium, beta-carotene) and phytic acid concentrations in dry peas, lentils, and chickpea that are commercially grown in the USA.

Pulse quality data collected from 30 dry pea, 18 lentil, and 16 chickpea samples acquired from industry representatives in pulse growing areas in North Dakota, South Dakota, Idaho, Montana, and Washington State are included in the 2011 report. The proximate quality parameters determined include moisture, protein, ash, total starch, water absorption, unsoaked seeds, test weight, 1000 seed weight, and starch parameters of peak viscosity, hotplate viscosity, break down, cold paste viscosity, setback, and peak time (National Pulse Quality survey, 2010). In addition, average color quality (before and after soaking) and canning quality were also determined. The results of each quality parameter are provided in this report for each pulse crop category. In 2011, US pulse production was below the long-term annual average due to excess moisture and flooding situations in the majority of pulse-growing areas (Northern Pulse Growers Association, 2011). Therefore, the total number of samples used in the 2011 quality survey was low compared to 2010. However, physical quality parameters such as starch, color, and canning quality parameters of the 2011 samples were consistent with previous years with the exception of low moisture and protein levels.

The pulses grown in 2011 are an excellent source of a wide range of micronutrients including minerals and beta-carotene. This is important because micronutrient malnutrition, also known as "hidden hunger", affects more than 2 billion people worldwide. Sixty percent of the seven billion people in the world are iron deficient, over 30% are zinc deficient, and more than 15% are selenium deficient. Approximately three million children around the world develop xerophthalmia (damage to the cornea of the eye) and every year more than half a million of children go blind as a result of vitamin A deficiency. This report provides iron, zinc, calcium, magnesium, potassium, selenium and beta-carotene levels of the US grown pulses. Phytic acid is an antinutrient in the seeds of legumes and cereals that has the potential to bind mineral micronutrients in food and reduce their bioavailability. The phytic acid data presented in this report highlight the fact that USA grown pulses are low in phytic acid and thus their mineral micronutrients are highly bioavailable. This report includes the percent of the recommended dietary allowance (RDA) of minerals from a 50 g serving of pulses for 19 to 50 year old adults, and these data highlight the potential of US grown pulses to be a whole food solution to mineral micronutrient malnutrition in particular and a contributor to better human nutrition in general.

# **Pulse Production**

Significant land area has recently been added to pulse crop production in the Northern Plains region of the USA, including parts of North Dakota, South Dakota, Washington State, and eastern Montana. Over the last two decades, pulse production area has increased from less than 10,000 acres to over 1 million acres. The USA is one of the major pea exporters in the world and the production of lentils continues to increase. The total US pulse production in 2010 was approximately 1,131,261 MT. As a result of adverse weather conditions experienced, US pulse production in 2011 was reduced by approximately 46% compared to 2010 values. Late spring seeding and severe flooding conditions across the Northern Plains growing regions impacted the amount of seeded acreage and pulse production. The total acreage seeded with pulse crops was 917,548 in 2011 compared to 1,456,347 in 2010, representing a 37% decrease. Total dry pea and lentil production decreased by 55 and 43%, respectively; however, total chickpea production increased by approximately 7% (Figure 1).



Figure 1. USA dry pea, lentil, and chickpea acreage (acres) and production (MT) in 2010 and 2011 (based on USA Dry Pea Lentil Council data).

**Dry Pea:** Dry pea production in the US was 55% less in 2011 compared to 2010. In North Dakota, acres seeded with dry pea dropped from 394,667 in 2010 to 86,000 acres in 2011. Dry pea acreage in Montana dropped by about 25,000 acres in 2011 compared to 2010. Dry pea acreage in the Pacific Northwest growing region remained fairly constant, with the exception of 16,000 acre decrease in Idaho (USA Dry Pea Lentil Council, 2012).

**Lentil:** Total lentil acreage declined from 594,425 in 2010 to 430,843 in 2011, a decrease of 27%. Total lentil acreage decreased from 232,270 in 2010 to 86,000 in 2011 in North Dakota, and by about 50% from 2010 to 2011 in Idaho. Acreage seeded with medium and small lentil each declined by about 6,000 acres in Washington State. However, lentil acreage in Montana increased from 225,488 in 2010 to 256,800 in 2011 (USA Dry Pea Lentil Council, 2012).

**Chickpea:** Total chickpea acreage in the US was comparable in 2010 and 2011. Interestingly, chickpea acreage in Montana increased from 6,405 acres in 2010 to 12,400 acres in 2011, but decreased in North Dakota from 9,676 acres in 2010 to 2,295 acres in 2011.

# **Laboratory Analysis**

Standard methods were followed for the determination of each pulse quality attribute in 2011. Table 1 includes the reference for each method. All 2011 pulse samples were stored at -40°C for quality preservation until sample analysis.

| Quality Attribute    | Method                                       | Remarks                                                      |
|----------------------|----------------------------------------------|--------------------------------------------------------------|
| Moisture (%)         | AACC method 44-15A                           | Indicator of post-harvest handling, milling yield            |
| Protein (%)          | AACC method 46-30                            | Indicator of nutritional quality and processing              |
| Ash (%)              | AACC method 08-01                            | Indicator of total mineral content                           |
| Total starch (%)     | AACC method 76-13                            | Indicator of nutritional quality and processing              |
| Water absorption (%) | AACC method 56-35.01                         | Indicator of cooking quality/uniformity and canning          |
| Unsoaked seed (%)    | AACC method 56-35.01                         | Indicator of cooking quality/uniformity and canning          |
| Test weight (lb/bu)  | AACC method 55-10                            | Indicator of sample density, size, and shape                 |
| 1000 seed weight     | 100-kernel sample weight times 10            | Indicator of grain size and milling yield                    |
| Starch properties    | Rapid Visco Analyzer                         | Indicator of texture, firmness, and gelatinization of starch |
| Color                | Konica Minolta CR-310<br>Chroma meter        | Indicator of visual quality and processing                   |
| Canning              | Modified from Uebersax<br>and Hosfield, 1985 | Indicator of canning quality and visual appearance           |
| Micronutrients       | Thavarajah et al., 2008,<br>2009a            | Micronutrient analysis and malnutrition/cancer protection    |
| Beta-carotene        | Katrangi et al., 1984                        | Pro vitamin A analysis and vitamin rich foods                |
| Phytic acid          | Thavarajah et al., 2009b                     | Phytic acid analysis and phytic acid levels in foods         |

### Table 1. Quality attribute, analytical method, and remarks.

# **Dry Pea Quality**

## **Sample distribution**

A total of 30 dry pea samples were collected from Montana, North Dakota, Idaho, and Washington State from January to March, 2012. Growing location, number of samples, market class, and genotype details of these dry peas samples are described in Table 2.

# Table 2. Description of dry pea samples usedin the 2011 pulse quality survey.

| State        | No. of<br>samples | Market class    | Genotype           |
|--------------|-------------------|-----------------|--------------------|
| Montana      | 7                 | Yellow          | Korando            |
|              |                   | Yellow          | Thunderbird        |
|              |                   | Green           | CDC Striker        |
|              |                   | Green           | Aragon             |
|              |                   | Green           | Ariel              |
| North Dakota | 6                 | Yellow          | DS Admiral         |
|              |                   | Yellow          | Thunderbird        |
|              |                   | Yellow          | CDC Golden         |
|              |                   | Green           | CDC Striker        |
|              |                   | Green           | K-2                |
| Idaho        | 8                 | Green           | Aragon             |
|              |                   | Green           | Ariel              |
|              |                   | Green           | Banner             |
|              |                   | Small Marrowfat | 90-7 Marrowfat     |
|              |                   | Small Green     | Small Sieve Alaska |
| Washington   | 9                 | Yellow          | Universal          |
|              |                   | Green           | Ariel              |
|              |                   | Green           | Columbian          |
|              |                   | Green           | Prodigy            |
|              |                   | Green           | Aragon             |
| Total        | 30                |                 |                    |

### Proximate analysis of dry pea (Table 3)

### Moisture

Moisture content of dry pea ranged from 7-9% in 2011. The average moisture content of the 30 samples was 7.3%, which is considerably lower than the 3-year average of 12.6%.

### Protein

Protein content of dry pea ranged from 18.3-27.4% with an average of 22.5%. Similar to moisture, the average protein content of dry peas grown in 2011 was lower than the 3-year average of 24.4%.

### Ash

Ash content of dry pea ranged from 2.4-3.5% with an average of 2.6%. The average ash content of dry peas grown in 2011 was equal to the 3-year average of 2.6%.

### **Total starch**

Total starch content of dry pea ranged from 32-59% with an average of 41%. The average total starch content of dry peas grown in 2011 was lower than the 3-year average of 46%.

|                               | 20        | 11        |      | Mean |      |      |  |
|-------------------------------|-----------|-----------|------|------|------|------|--|
| Characteristics <sup>*</sup>  | range     | mean (SD) | 2010 | 2009 | 2008 | mean |  |
| Physical Quality              |           |           |      |      |      |      |  |
| 1. Moisture (%)               | 7.0-9.0   | 7.3 (0.3) | 13.2 | 11.9 | 12.8 | 12.6 |  |
| 2. Protein (%)                | 18.3-27.4 | 22.5 (2)  | 27.1 | 24.1 | 21.9 | 24.4 |  |
| 3. Ash (%)                    | 2.4-3.5   | 2.6 (0.2) | 2.6  | 2.5  | 2.6  | 2.6  |  |
| 4. Total starch (%)           | 32-59     | 41 (5.8)  | 45   | 43   | 51   | 46   |  |
| 5. Water absorption (%)       | 93-108    | 101 (3.9) | 98   | 94   | 98   | 97   |  |
| 6. Unsoaked seed (%)          | 0-6       | 0.6 (1.2) | 1.1  | 3.9  | -    | 2.5  |  |
| 7. Test weight (lb/Bu)        | 59-64     | 61 (1)    | 63   | 63   | 63   | 63   |  |
| 8. 1000 seed weight (g)       | 160-272   | 203 (26)  | 241  | 225  | 235  | 234  |  |
| Starch Properties             |           |           |      |      |      |      |  |
| 1. Peak viscosity (RVU)       | 148-747   | 215 (103) | 126  | 117  | 118  | 120  |  |
| 2. Hot paste viscosity (RVU)  | 124-434   | 165 (54)  | 118  | 108  | 96   | 107  |  |
| 3. Break down (RVU)           | 14-69     | 41 (12)   | 8    | 9    | 22   | 13   |  |
| 4. Cold paste viscosity (RVU) | 236-500   | 355 (65)  | 204  | 184  | 180  | 189  |  |
| 5. Setback (RVU)              | 103-325   | 200 (51)  | 87   | 76   | 84   | 82   |  |
| 6. Peak time (min)            | 7.7-9.5   | 8.2 (0.4) | 8.6  | 8.3  | 14   | 10.3 |  |

### Table 3. Proximate analysis of dry pea grown in the USA, 2011.

\* all measurements were done based on a sample arrival basis (dry basis).

### Water absorption

Water absorption of dry pea ranged from 93-108% with an average of 101%. These values bracket the 3-year average of 97%.

### Unsoaked seed

Unsoaked seed percentage ranged from 0-6% with an average of 0.6%, which was lower than the 3-year average of 2.5%.

### **Test weight**

Test weight ranged from 59-64 lb/ Bu with an average of 61 lb/Bu. These values bracket the 3-year average of 63 lb/Bu.

### 1000 seed weight

The average 1000 seed weight of dry peas grown in 2011 was 203 g, which was lower than the 3-year average of 234.

### **Starch properties**

Average values of all starch properties in 2011 were significantly higher than the 3-year averages.



### **Proximate analysis of dry pea market classes** (Table 4)

Both yellow and green dry pea market classes showed similar proximate analysis with the exception of total starch, unsoaked seed, 1000 seed weight, and starch properties. Yellow peas had higher levels of total starch, unsoaked seed, and 1000 seed weight compared to green peas. For both market classes, average moisture and protein levels decreased from 2010 values. Green peas had higher starch properties compared to yellow peas and, for both market classes, average starch properties increased from 2010. DS Admiral and CDC Golden had the highest protein content and CDC Golden and Korando had the highest total starch content compared to the other yellow market class genotypes. For the green pea market class, Columbian had the highest protein content and K-2 had the highest starch content compared to the other genotypes. The green dry pea market class also had higher peak viscosity values compared to the yellow pea market class.

|                               | Mean (SD) of yellow pea |           | Mean (SD) c | of green pea |
|-------------------------------|-------------------------|-----------|-------------|--------------|
| Characteristics*              | 2011                    | 2010      | 2011        | 2010         |
| Physical Quality              |                         |           |             |              |
| 1. Moisture (%)               | 7.3 (0.1)               | 13.6 (2)  | 7.4 (0.4)   | 12.8 (2)     |
| 2. Protein (%)                | 22.8 (2)                | 27.2 (2)  | 22.4 (2)    | 27.0 (2)     |
| 3. Ash (%)                    | 2.7 (0.2)               | 2.7 (0.5) | 2.6 (0.2)   | 2.4 (0.5)    |
| 4. Total starch (%)           | 44 (4)                  | 45 (3)    | 40 (6)      | 45 (3)       |
| 5. Water absorption (%)       | 99 (4)                  | 99 (8)    | 101 (4)     | 99 (8)       |
| 6. Unsoaked seed (%)          | 0.8 (0.9)               | 1 (2)     | 0.5 (1.3)   | 1.1 (2)      |
| 7. Test weight (lb/Bu)        | 62 (1)                  | 63 (1)    | 61 (1)      | 63.3 (1)     |
| 8. 1000 seed weight (g)       | 225 (22)                | 248 (27)  | 195 (22)    | 232 (36)     |
| Starch Properties             |                         |           |             |              |
| 1. Peak viscosity (RVU)       | 192 (14)                | 127 (14)  | 223 (120)   | 124 (19)     |
| 2. Hot paste viscosity (RVU)  | 152 (12)                | 120 (13)  | 169 (62)    | 115 (16)     |
| 3. Break down (RVU)           | 41 (5)                  | 7 (5)     | 41 (13)     | 9 (7)        |
| 4. Cold paste viscosity (RVU) | 331 (33)                | 204 (29)  | 365 (72)    | 204 (35)     |
| 5. Setback (RVU)              | 179 (23)                | 85 (17)   | 209 (57)    | 89 (21)      |
| 6. Peak time (min)            | 8 (0.2)                 | 9 (0.7)   | 8 (0.4)     | 9(1)         |

#### Table 4: Proximate analysis of dry pea market classes.

\* all measurements were done based on a sample arrival basis (dry basis)

### Proximate analysis of pea market classes (Table 5)

Dry peas grown in the US in 2011 had lower moisture content, protein, total starch, and 1000 seed weight compared to 3-year average values (mean of 2008, 2009, and 2010). Starch properties were substantially greater in 2011 compared to the 3-year average as a result of the lower moisture content observed in the dry pea crop. These data are important because the Asian noodle market, for example, prefers a medium to high peak viscosity flour product as it gives better textural characteristics. For the yellow market class, CDC Golden and DS Admiral had the highest protein content and Korando had the highest total starch content. For the green market class, Marrow Fat 90-7 had the highest protein content and K-2 had the highest total starch content.

# Table 5. Mean protein and starch content for different field pea cultivars grown in the USA, 2011.

|              |                    |              | Total Starch |
|--------------|--------------------|--------------|--------------|
| Market Class | Cultivar           | Protein (%)* | (%)#         |
| Yellow       | CDC Golden         | 24.4         | 47.0         |
|              | DS Admiral         | 24.7         | 44.4         |
|              | Korando            | 22.6         | 48.0         |
|              | Thunderbird        | 23.6         | 41.9         |
|              | Universal          | 20.1         | 41.0         |
| Green        | Aragon             | 20.9         | 39.7         |
|              | Ariel              | 21.7         | 37.6         |
|              | Banner             | 22.4         | 36.4         |
|              | CDC Striker        | 22.5         | 47.3         |
|              | Columbian          | 25.1         | 35.4         |
|              | Cruiser            | 22.7         | 38.6         |
|              | K-2                | 23.9         | 59.3         |
|              | Marrow Fat 90-7    | 24.3         | 42.2         |
|              | Prodigy            | 20.8         | 37.5         |
|              | Small Sieve Alaska | 23.3         | 39.7         |

\*Protein (%) was calculated on the basis of the total seed nitrogen content. \*Total starch was measured by AACC method 76-13.

### Color quality of dry peas (Tables 6 and 7)

Color is an important quality attribute for the dry pea food industry. Color quality was measured by using an L, a, and b type scale as follows:

- L (lightness) axis 0 is black and 100 is white
- a (red-green) axis positive values are red, negative values are green, and zero is neutral
- b (yellow-blue) axis positive values are yellow, negative values are blue, and zero is neutral

Color quality for both market classes in 2011 was fairly similar to results reported in 2010. The higher negative value for red-green (axis a) in 2011 indicates a greener color. Among the genotypes, Banner had the highest a axis value (greenest color) before soaking and Colombian the highest after soaking. Color quality effects on the final product are required by end-users. Generally, a bright green color is more desirable in dry pea for many products. Green dry pea cultivars Aragon, Arial, Banner, and Columbian had the greenest color compared to other cultivars.

# Table 7. Mean color quality of green peacultivars grown in the USA, 2011.

|                        | a*(red-green)    |                          |  |  |  |
|------------------------|------------------|--------------------------|--|--|--|
| Cultivars              | Whole seed color | Seed color after soaking |  |  |  |
| Aragon                 | -2.4             | -8.8                     |  |  |  |
| Arial                  | -2.5             | -9.1                     |  |  |  |
| Banner                 | -3.1             | -9.1                     |  |  |  |
| Columbian              | -2.3             | -9.5                     |  |  |  |
| Cruiser                | -1.5             | -8.3                     |  |  |  |
| K2                     | -0.9             | -7.5                     |  |  |  |
| Marrow Fat 90-7        | -1.6             | -6.4                     |  |  |  |
| Small sieve Alaska     | -1.9             | -8.8                     |  |  |  |
| Prodigy                | 4.8              | -8.7                     |  |  |  |
| CDC Striker            | -1.5             | -8                       |  |  |  |
| Prodigy<br>CDC Striker | 4.8<br>-1.5      | -8.7<br>-8               |  |  |  |

\*negative values are green and zero is neutral.

### Table 6. Color quality of yellow and green peas before and after soaking.

|                            |                | Mean (SD) o | of yellow pea |         | Mean (SD) of green pea |          |               |          |
|----------------------------|----------------|-------------|---------------|---------|------------------------|----------|---------------|----------|
|                            | Before soaking |             | After soaking |         | Before soaking         |          | After soaking |          |
| Color scale                | 2011           | 2010        | 2011          | 2010    | 2011                   | 2010     | 2011          | 2010     |
| L (lightness) <sup>†</sup> | 65 (2)         | 63 (1)      | 66 (2)        | 67 (1)  | 61 (2)                 | 59 (4)   | 55 (2)        | 57 (2)   |
| a (red-green)±             | 4.7 (0.3)      | 5.6 (1)     | 5.6 (1)       | 5.5 (1) | -0.9 (3)               | -1.7 (1) | -8.7 (1)      | -6.7 (1) |
| b (yellow-blue)*           | 14 (0.4)       | 15 (1)      | 30 (0.4)      | 28 (2)  | 10 (2)                 | 9 (1)    | 18 (1)        | 17 (1)   |

<sup>†</sup> Zero is black, 100 is white.

\* Positive values are red; negative values are green and zero is neutral

\* Positive values are yellow; negative values are blue and zero is neutral

## Canning quality of dry peas (Tables 8 and 9)

The color quality of canned dry pea was measured using an L, a, and b type scale. Other quality characters were measured as follows:

- Clumping: 1 = no clumping, 5 = highest clumping
- Splitting: 1 = no splitting, 5 = highest splitting
- Turbidity: 1 = no turbidity or clear, 5 = highest or cloudy
- Overall acceptance: 1 = very good, 5 = very poor

Overall acceptance was based on the visual appearance. For green cultivars, Banner, K-2, CDC Striker, and Alaska had higher overall acceptance compared to Ariel and Aragon. Yellow market class cultivar Korando had the highest overall acceptance compared to other cultivars.



| Quality Attributes         | Ariel | Banner | Aragorn | K-2  | CDC Striker | Alaska |
|----------------------------|-------|--------|---------|------|-------------|--------|
| L (lightness) <sup>+</sup> | 48.9  | 47.8   | 51.4    | 51.4 | 51.8        | 49.1   |
| a (red-green)±             | -0.5  | 0.6    | -0.3    | 0.7  | 0.9         | 0.4    |
| b (yellow-blue)*           | 16.9  | 14.6   | 19.6    | 15.1 | 15.7        | 15.2   |
| Clumping (1-5)             | 3     | 0      | 5       | 0    | 0           | 1      |
| Splitting (1-5)            | 5     | 4      | 5       | 5    | 5           | 2      |
| Turbidity (1-5)            | 5     | 5      | 5       | 5    | 5           | 5      |
| Overall (1-5)              | 4     | 3      | 5       | 3    | 3           | 3      |

#### Table 8. Mean canning quality of USA grown green peas.

<sup>†</sup> Zero is black, 100 is white.

 $^{\scriptscriptstyle \pm}$  Positive values are red; negative values are green and zero is neutral

\* Positive values are yellow; negative values are blue and zero is neutral

### Table 9. Mean canning quality of USA grown yellow peas.

| Quality Attributes         | Universal | CDC Golden | DS Admiral | Korando | Thunderbird |
|----------------------------|-----------|------------|------------|---------|-------------|
| L (lightness) <sup>†</sup> | 54.5      | 55.6       | 54.5       | 54.9    | 55.2        |
| a (red-green) <sup>±</sup> | 5.6       | 5.5        | 5.6        | 5.5     | 5.9         |
| b (yellow-blue)*           | 21.4      | 24.6       | 24.0       | 22.0    | 22.4        |
| Clumping (1-5)             | 1         | 2          | 1          | 0       | 0           |
| Splitting (1-5)            | 4         | 3          | 5          | 3       | 5           |
| Turbidity (1-5)            | 5         | 5          | 3          | 2       | 4           |
| Overall (1-5)              | 3         | 3          | 3          | 2       | 3           |

<sup>†</sup> Zero is black, 100 is white.

\* Positive values are red; negative values are green and zero is neutral

\* Positive values are yellow; negative values are blue and zero is neutral

### Mineral Micronutrients

### Dry pea micronutrients

Iron, zinc, calcium, magnesium, potassium, and selenium are essential human mineral micronutrients. Improvement of micronutrient content is a new initiative towards nutritional quality improvement in US pulses. Table 10 compares the mineral micronutrient content of yellow and green dry pea market classes. The total selenium concentration of the yellow market class is higher than that of the green market class. Other mineral micronutrients levels are similar for both market classes.

Phytic acid is an antinutrient for mineral absorption in humans and animals. Both yellow and green dry pea market classes have low levels of phytic acid, which is a positive factor for increased human mineral micronutrient bioavailability. Beta-carotene is a precursor for vitamin A synthesis. The green market class has higher level of betacarotene compared to the yellow market class.

### Impact of location on dry pea mineral micronutrients

Growing location soil, weather, and other environmental factors affect mineral micronutrient levels in dry pea. Dry pea grown in North Dakota and Montana has higher selenium concentrations. Dry pea grown in North Dakota is high in iron for both market classes. Table 11 provides mineral micronutrient concentrations for dry pea grown in each of three states.

### Mineral nutrient levels of dry pea cultivars

Dry pea cultivars vary with respect to seed mineral micronutrient levels. Among different dry pea genotypes, Korando and Thunderbird of the yellow market class and Cruiser of the green market class have the highest selenium levels. Details of the mineral micronutrients of different genotypes are shown in Table 12.

Selenium is an essential element for both humans and animals. It plays an important role in enzymes, cofactors, and antioxidant protective pathways of human body. The recommended daily allowance (RDA) of 55 µg of Se day<sup>-1</sup> is generally met by North Americans. However, an estimated 30-100 million people around the world are selenium deficient. Low dietary intake of selenium is also linked to arsenic poisoning in Bangladesh, juvenile cardiomyopathy (heart problems) in China, poor skeletal muscle strength in adults, infections, chronic heart failure, and prostate and bladder cancer.

Iron and zinc are essential elements for all life forms and for normal human physiology. Iron is critical for many proteins and enzymes and is essential for oxygen transport, regulation of cell growth, and differentiation. Zinc exhibits antioxidant properties and is necessary for protein synthesis, DNA replications, proper sense of taste and smell, and stress reduction. Populations largely dependent on cereal diets are often deficient in minerals such as potassium, magnesium, and calcium.

# Table 10. Mean micronutrient concentrationof dry pea grown in the USA, 2011.

|                         | Market class* |            |  |  |  |
|-------------------------|---------------|------------|--|--|--|
| Micronutrient           | Yellow        | Green      |  |  |  |
| Iron (mg/kg)            | 42 (7)        | 39 (6)     |  |  |  |
| Zinc (mg/kg)            | 22 (3)        | 25 (4)     |  |  |  |
| Calcium (mg/kg)         | 529 (68)      | 507 (114)  |  |  |  |
| Magnesium (mg/kg)       | 821 (35)      | 769 (58)   |  |  |  |
| Potassium (mg/kg)       | 5830 (312)    | 6000 (320) |  |  |  |
| Selenium (µg/kg)        | 700 (400)     | 326 (288)  |  |  |  |
| Phytic acid (mg/g)      | 6.2 (2)       | 4.8 (1)    |  |  |  |
| Beta-carotene (µg/100g) | 160 (21)      | 989 (488)  |  |  |  |

\*mean values with standard deviation

For the yellow market class, CDC Golden had higher iron and zinc levels compared to the other cultivars. Korando and Thunderbird had higher selenium content compared to the other cultivars. For the green market class, K-2 had the highest iron content compared to the other cultivars. Generally, dry peas are low in phytic acid indicating greater mineral bioavailability.

# Table 11. Growing location effects on mineral micronutrientconcentration of field pea grown in the USA, 2011.

|                             |       | Mean concentration (mg/kg) |      |      |         |           |           |
|-----------------------------|-------|----------------------------|------|------|---------|-----------|-----------|
| Market Class<br>of dry peas | State | Selenium<br>(µg/kg)        | Iron | Zinc | Calcium | Magnesium | Potassium |
| Yellow                      | ND    | 770                        | 44   | 22   | 506     | 839       | 5845      |
|                             | WA    | 40                         | 39   | 24   | 525     | 757       | 5530      |
|                             | MT    | 1360                       | 38   | 23   | 500     | 829       | 5532      |
|                             | Mean  | 723                        | 40   | 23   | 510     | 808       | 5636      |
| Green                       | ND    | 590                        | 48   | 24   | 429     | 846       | 6118      |
|                             | WA    | 16                         | 37   | 23   | 557     | 780       | 6025      |
|                             | MT    | 620                        | 38   | 28   | 527     | 756       | 5990      |
|                             | ID    | 150                        | 40   | 25   | 458     | 726       | 5943      |
|                             | Mean  | 344                        | 41   | 25   | 493     | 777       | 6019      |

#### Table 12. Mean nutritional quality of dry pea cultivars grown in the USA, 2011.

| Market<br>Class | Genotype           | lron<br>mg/kg | Zinc<br>mg/kg | Calcium<br>mg/kg | Magnesium<br>mg/kg | Potassium<br>mg/kg | Selenium<br>µg/kg | Phytic<br>acid mg/g |
|-----------------|--------------------|---------------|---------------|------------------|--------------------|--------------------|-------------------|---------------------|
| Yellow          | CDC Golden         | 45.6          | 25.4          | 506              | 864                | 6450               | 531               | 6.5                 |
|                 | DS Admiral         | 42.7          | 20.5          | 648              | 859                | 5575               | 815               | 7.1                 |
|                 | Korando            | 44.9          | 14.8          | 584              | 840                | 5622               | 1100              | 5.1                 |
|                 | Thunderbird        | 35.7          | 21.0          | 466              | 823                | 5624               | 1000              | 5.7                 |
|                 | Universal          | 35.7          | 24.2          | 562              | 761                | 5750               | 90                | 4.6                 |
| Green           | Aragon             | 36.8          | 25.1          | 601              | 768                | 6003               | 196               | 4.6                 |
|                 | Ariel              | 40.4          | 22.2          | 437              | 736                | 6104               | 311               | 4.6                 |
|                 | Banner             | 35.7          | 23.9          | 446              | 725                | 5955               | 147               | 4.2                 |
|                 | CDC Striker        | 43.5          | 27.8          | 546              | 784                | 5744               | 498               | 6.0                 |
|                 | Columbian          | 34.9          | 23.1          | 531              | 806                | 6098               | 187               | 4.8                 |
|                 | Cruiser            | 42.7          | 26.9          | 433              | 845                | 6085               | 962               | 5.1                 |
|                 | K-2                | 50.4          | 25.2          | 488              | 874                | 6316               | 577               | 5.3                 |
|                 | Marrow Fat 90-7    | 40.1          | 28.2          | 533              | 730                | 5594               | 145               | 5.0                 |
|                 | Prodigy            | 35.4          | 30.0          | 685              | 767                | 6171               | 194               | 4.3                 |
|                 | Small Sieve Alaska | 43.8          | 20.3          | 438              | 719                | 5775               | 166               | 4.0                 |

# **Lentil Quality**

### Sample Distribution

A total of 18 lentil samples were collected from Montana, North Dakota, Idaho, and Washington State. Similar to dry peas, lentil samples were also collected from January to March 2012. Growing location, number of samples, market class, and genotypes used in 2011 quality survey are described in Table 13.

### Proximate analysis of lentils (Table 14)

### Moisture

Moisture content of lentils ranged from 6-9% in 2011. The average moisture content of the 18 samples was 7.1%, which is considerably lower than the 3-year average of 10.6%.

### Protein

Protein content ranged from 19.0-25.4% with an average of 22.2%. Similar to moisture, the average protein content of 2011 grown lentils was lower than the 3-year average of 25.2%.

### Ash

Ash content of lentils ranged from 1.9-3.0% with the average of 2.7%. The average ash content of lentils grown in 2011 was equal to the 3-year average.

### **Total starch**

Total starch content ranged from 29-53% with an average of 40%. This average was lower than the 3-year average of 47%.

### Water absorption

The average water absorption of dry pea ranged from 59-123% with an average of 88%. These values bracketed the 3-year average of 94%.

#### Unsoaked seed

The unsoaked seed percentage was 6.0%, which was higher than the 3-year average of 3.0%.

### Test weight

Test weight ranged from 56-65 lb/ Bu with an average of 60 lb/Bu. These values bracket the 3-year average of 62 lb/Bu.

### 1000 seed weight

The average seed density of lentils grown in 2011 was 49 g, which was similar to the 3-year average of 48 g.

### **Starch properties**

The average values of starch properties of lentils grown in 2011 were higher than the 3-year average values.

# Table 13. Description of lentil genotypesused in 2011 pulse quality survey.

| State         | No. of samples | Market class  | Genotype      |
|---------------|----------------|---------------|---------------|
| Montana       | 5              | Green         | CDC Richlea   |
|               |                | Green         | Laird         |
|               |                | Green         | CDC Meteor    |
| North Dakota  | 8              | Red           | CDC Impala    |
|               |                | Red           | CDC Redberry  |
|               |                | Red           | CDC Maxim     |
|               |                | Green         | CDC Richlea   |
|               |                | Green         | Riveland      |
| Idaho         | 1              | Black/Beluga  | Black/Beluga  |
| Washington    | 3              | Red-Winter    | Not available |
|               |                | Spanish Brown | Pardina       |
| Not available | 1              |               |               |
| Total         | 18             |               |               |

| Table 14. Proximate ana | ysis of lentils grown | in the USA, 2011. |
|-------------------------|-----------------------|-------------------|
|-------------------------|-----------------------|-------------------|

|                               | 2011      |            |      | Mean |      |      |  |
|-------------------------------|-----------|------------|------|------|------|------|--|
| Characteristics               | range     | Mean (SD)† | 2010 | 2009 | 2008 | mean |  |
| Physical Quality              |           |            |      |      |      |      |  |
| 1. Moisture (%)               | 5.5-8.6   | 7.1 (0.5)  | 11.5 | 10.5 | 9.8  | 10.6 |  |
| 2. Protein (%)                | 19.0-25.4 | 22.2 (2)   | 26.9 | 25.2 | 23.5 | 25.2 |  |
| 3. Ash (%)                    | 1.9-3.0   | 2.7 (0.3)  | 2.8  | 2.6  | 2.6  | 2.7  |  |
| 4. Total starch (%)           | 28.7-52.7 | 40 (5)     | 43   | 47   | 52   | 47   |  |
| 5. Water absorption (%)       | 59-123    | 88 (17)    | 96   | 93   | 94   | 94   |  |
| 6. Unsoaked seed (%)          | 0-22      | 6 (6.5)    | 2    | 3    | -*   | 3    |  |
| 7. Test weight (lb/Bu)        | 56-65     | 60 (2)     | 61   | 62   | 62   | 62   |  |
| 8. 1000 seed weight (g)       | 22-75     | 49 (14)    | 46   | 49   | -*   | 48   |  |
| Starch Properties             |           |            |      |      |      |      |  |
| 1. Peak viscosity (RVU)       | 133-222   | 185 (24)   | 124  | 121  | 122  | 122  |  |
| 2. Hot paste viscosity (RVU)  | 109-165   | 145 (15)   | 112  | 110  | 86   | 103  |  |
| 3. Break down (RVU)           | 24-58     | 41 (11)    | 12   | 10   | 36   | 19   |  |
| 4. Cold paste viscosity (RVU) | 224-427   | 323 (65)   | 205  | 190  | 169  | 188  |  |
| 5. Setback (RVU)              | 115-263   | 178 (35)   | 93   | 80   | 83   | 85   |  |
| 6. Peak time (min)            | 7.6-8.9   | 8.1 (0.4)  | 8.9  | 8.8  | 12.6 | 10.1 |  |

\* Data not reported. <sup>†</sup> SD, Standard deviation.



## **Proximate analysis of lentil market classes** (Tables 15 and 16)

Both red and green lentil market classes had similar proximate analyses except for 1000 seed weight and starch properties. Red lentils had higher unsoaked seed percentages than green lentils. For both market classes, average moisture, protein, and starch levels decreased from 2010 values. In addition, green lentils had higher starch properties compared to red lentils, with the exception of setback value and peak time. For both market classes, average starch properties increased from 2010 values. CDC Redberry and CDC Maxim had the highest protein content compared to CDC Impala. In the red market class, CDC Redberry had the highest protein content and CDC Maxim had the highest starch content. For green lentils, CDC Richlea had the highest protein content and CDC Meteor had the highest starch content compared to the other genotypes.

## Color quality of lentils (Table 17)

Color quality for both market classes was similar to results reported in 2010.

|                               | Red       |          | Gre       | en       |
|-------------------------------|-----------|----------|-----------|----------|
| Characteristics*              | 2011      | 2010     | 2011      | 2010     |
| Physical Quality              |           |          |           |          |
| 1. Moisture (%)               | 7.1 (1)   | 11.7 (2) | 7.1 (0.1) | 11.4 (2) |
| 2. Protein (%)                | 22.4 (2)  | 27.6 (2) | 22.3 (2)  | 26.3 (2) |
| 3. Ash (%)                    | 2.5 (3)   | 2.9 (1)  | 2.7 (0.2) | 2.8 (1)  |
| 4. Total starch (%)           | 41 (5)    | 45 (7)   | 40 (5)    | 42 (5)   |
| 5. Water absorption (%)       | 86 (20)   | 93 (7)   | 91 (14)   | 99 (9)   |
| 6. Unsoaked seed (%)          | 9 (8)     | 2.1 (5)  | 3.4 (4)   | 1.7 (4)  |
| 7. Test weight (lb/Bu)        | 61 (2)    | 63 (3)   | 59 (2)    | 60 (3)   |
| 8. 1000 seed weight (g)       | 42 (11)   | 37 (7)   | 56 (9)    | 52 (11)  |
| Starch Properties             |           |          |           |          |
| 1. Peak viscosity (RVU)       | 174 (27)  | 122 (16) | 191 (19)  | 126 (21) |
| 2. Hot paste viscosity (RVU)  | 138 (16)  | 113 (14) | 147 (13)  | 112 (13) |
| 3. Break down (RVU)           | 36 (14)   | 9 (6)    | 44 (7)    | 14 (10)  |
| 4. Cold paste viscosity (RVU) | 310 (49)  | 207 (32) | 326 (45)  | 204 (35) |
| 5. Setback (RVU)              | 171 (34)  | 94 (20)  | 44 (7)    | 93 (23)  |
| 6. Peak time (min)            | 8.2 (0.3) | 9.4 (2)  | 7.9 (0.3) | 8.5 (1)  |
|                               |           |          |           |          |

#### Table 15. Summary of proximate analysis of red and green lentils grown in the USA, 2011.

\* Mean values with standard deviation.

# Table 16. Mean protein and starch content for different lentil cultivars grown in the USA, 2011.

| Market class  | Genotype     | Protein (%) | Total starch (%) |
|---------------|--------------|-------------|------------------|
| Red           | CDC Impala   | 19.1        | 39.3             |
|               | CDC Redberry | 25.4        | 41.2             |
|               | CDC Maxim    | 24.4        | 52.7             |
| Spanish brown | Pardina      | 20.8        | 38.3             |
| Green         | CDC Richlea  | 27.1        | 41.1             |
|               | Laird        | 22.2        | 41.2             |
|               | CDC Meteor   | 22.0        | 43.8             |
|               | Riveland     | 20.8        | 28.7             |

#### Table 17. Color quality of yellow and green lentils before and after soaking.

|                            | Mean (SD) of red lentils |        |               |         | Mean (SD) of green lentils |        |               |           |
|----------------------------|--------------------------|--------|---------------|---------|----------------------------|--------|---------------|-----------|
|                            | Before soaking           |        | After soaking |         | Before soaking             |        | After soaking |           |
| Color scale                | 2011                     | 2010   | 2011          | 2010    | 2011                       | 2010   | 2011          | 2010      |
| L (lightness) <sup>+</sup> | 54(1)                    | 51(7)  | 52(2)         | 54(1)   | 60(1)                      | 60(1)  | 60(1)         | 62(2)     |
| a (red-green)±             | 4.3(1)                   | 3.9(1) | 7.3(2)        | 6.9(2)  | 2.1(0.4)                   | 1.1(1) | 1(0.6)        | -0.2(1.5) |
| b (yellow-blue)*           | 8.6(2)                   | 8.2(2) | 17.7(1)       | 15.7(2) | 15(1)                      | 15(1)  | 23.6(1)       | 21.9(2)   |

<sup>†</sup> Zero is black, 100 is white.

\* Positive values are red, negative values are green, and zero is neutral

\* Positive values are yellow, negative values are blue, and zero is neutral

### Lentil Micronutrients

# Micronutrients levels of different market classes

Levels of mineral micronutrients iron, zinc, calcium, magnesium, potassium, and selenium in lentil are given in Table 18. The red market class has higher iron, zinc, and calcium levels. Lentils have low levels of phytic acid, a mineral antinutrient for which low levels are a positive factor for increased mineral bioavailability. Lentils are also a good source beta-carotene, a vitamin A precursor.

# Table 18. Micronutrient concentrations of lentils grown in the USA, 2011.

|                         | Marke      | et class*  |
|-------------------------|------------|------------|
| Micronutrient           | Red        | Green      |
| Iron (mg/kg)            | 67 (6)     | 53 (6)     |
| Zinc (mg/kg)            | 33 (6)     | 29 (4)     |
| Calcium (mg/kg)         | 569 (99)   | 501 (62)   |
| Magnesium (mg/kg)       | 720 (47)   | 761 (40)   |
| Potassium (mg/kg)       | 6108 (463) | 6255 (447) |
| Selenium (µg/kg)        | 495 (158)  | 698 (273)  |
| Phytic acid (mg/g)      | 5.2 (1.7)  | 5.2 (1.3)  |
| Beta-carotene (µg/100g) | 264 (189)  | 349 (106)  |

\* mean values with standard deviation.

### Mineral nutrient levels of lentil cultivars

Mineral micronutrient levels vary with lentil genotype. The levels of iron, zinc, calcium, magnesium, potassium and selenium are given in Table 19. With the exception of Pardina and Beluga genotypes with respect to selenium concentrations, all lentil genotypes have high level of mineral micronutrients. All lentil genotypes have low phytic acid concentrations.

Please note that due to the small number of lentil samples, no location details are provided for lentil mineral micronutrients. However, mineral levels of lentils are known to vary with growing location and soil conditions. Lentils grown in North America are a rich source of iron, zinc, magnesium, potassium, and selenium. Lentils are naturally low in phytic acid (PA), and low PA is a favorable factor for improving mineral bioavailability. Lentil is also a good source of beta-carotene, the presence of which also favors increased mineral bioavailability. A single 50-100 g serving of lentil could potentially provide adequate daily amount of minerals. For this reason, lentil can be considered as a biofortified whole food source of selenium, iron, and zinc for lentil consumers (Thavarajah et al., 2011).

CDC Maxim had higher iron and zinc content with low phytic acid levels compared to CDC Impala and CDC Redberry. However, CDC Maxim was low in selenium compared to CDC Impala and CDC Redberry. Spanish brown cultivar Pardina was rich in iron and zinc but low in selenium. Generally, green lentil cultivars were low in iron and zinc compared to selenium.

| Market Class  | Genotype     | lron<br>mg/kg | Zinc<br>mg/kg | Calcium<br>mg/kg | Magnesium<br>mg/kg | Potassium<br>mg/kg | Selenium<br>µg/kg | Phytic acid<br>mg/g |
|---------------|--------------|---------------|---------------|------------------|--------------------|--------------------|-------------------|---------------------|
| Red           | CDC Impala   | 68            | 35            | 430              | 773                | 6736               | 560               | 8.2                 |
|               | CDC Redberry | 71            | 35            | 709              | 755                | 6342               | 579               | 6.5                 |
|               | CDC Maxim    | 72            | 38            | 569              | 699                | 5810               | 212               | 5.6                 |
| Spanish Brown | Pardina      | 72            | 30            | 470              | 682                | 6112               | 80                | 4.7                 |
| Black         | Beluga       | 49            | 35            | 415              | 696                | 5989               | 143               | 4.1                 |
| Green         | CDC Richlea  | 52            | 29            | 530              | 748                | 6098               | 644               | 5.2                 |
|               | Laird        | 54            | 34            | 507              | 743                | 6076               | 697               | 4.3                 |
|               | CDC Meteor   | 54            | 28            | 494              | 789                | 6398               | 786               | 4.9                 |
|               | Riveland     | 53            | 31            | 375              | 761                | 6786               | 702               | 6.5                 |

#### Table 19. Mean nutritional quality of lentil cultivars grown in the USA, 2011.



# **Chickpea Quality**

### **Sample Distribution**

A total of 16 chickpea samples were collected from Montana, North Dakota, South Dakota, Idaho, and Washington State. Samples of approximately 100-250 g were received by the NDSU Pulse Quality and Nutrition Laboratory from January to March, 2012. Chickpea growing location, number of samples, market class, and genotypes used in 2011 quality survey are described in Table 20.

# Table 20. Description of chickpea cultivarsused in 2011 pulse quality survey.

| State        | No of samples | Market class | Genotype      |  |
|--------------|---------------|--------------|---------------|--|
| Montana      | 1             | Kabuli       | Not available |  |
| North Dakota | 4             | Kabuli       | Frontier      |  |
| South Dakota | 1             | Kabuli       | Frontier      |  |
| Idaho        | 2             | Kabuli       | Bronic        |  |
|              |               | Kabuli       | Billy Bean    |  |
| Washington   | 8             | Kabuli       | Frontier      |  |
|              |               |              | Sierra        |  |
|              |               |              | Pedro         |  |
|              |               |              | HB-14         |  |
|              |               |              | Troys         |  |
| Total        | 16            |              |               |  |

### Proximate analysis of chickpea (Table 21)

### Moisture

The moisture content of US grown chickpea ranged from 4.6-8.7% in 2011. The average moisture content of chickpea was 6.9%.

### Protein

Protein content of chickpea ranged from 17.4-23.8% with an average of 20.7%. Bronic had the highest protein content compared to the other cultivars (Table 22).

### Ash

The ash content of chickpea ranged from 2.5-3.0% with an average of 2.8%.

### **Total starch**

The total starch content ranged from 23-60% with an average of 41%. CDC Frontier had the highest total starch content compared to the other cultivars (Table 22).

### Water absorption

The average water absorption of chickpea ranged from 93-118% with an average of 103%.

### **Unsoaked seed**

All tested seeds were properly soaked. No unsoaked seed percentage was observed.

### **Test weight**

Test weight ranged from 57-64 lb/ Bu with an average of 61 lb/Bu.

### 1000 seed weight

The seed density of chickpea grown in 2011 ranged from 268-556 g with an average of 387 g.

### **Starch properties**

The average values of starch properties were similar to dry peas.

### Canning quality (Table 23)

Color quality of canned chickpea was measured using an L, a, and b type scale. Other quality characters were measured as followed:

- Clumping: 1 = no clumping,
   5 = highest clumping
- Splitting: 1 = no splitting, 5 = highest splitting
- Turbidity: 1 = no turbidity or clear, 5 = highest or cloudy
- Overall acceptance:
   1 = very good, 5 = very poor

Sierra had the highest overall acceptance compared to CDC Frontier.

# Table 21. Summary of proximate analysisof chickpea grown in USA, 2011.

| Characteristics'rangeMean (SD)Physical Quality1. Moisture (%)4.6-8.76.9 (1) |  |
|-----------------------------------------------------------------------------|--|
| Physical Quality           1. Moisture (%)         4.6-8.7         6.9 (1)  |  |
| 1. Moisture (%) 4.6-8.7 6.9 (1)                                             |  |
|                                                                             |  |
| 2. Protein (%) 17.4-23.8 20.7 (2)                                           |  |
| 3. Ash (%) 2.5-3.0 2.8 (0.1)                                                |  |
| 4. Total starch (%) 23.2-59.8 41 (7)                                        |  |
| 5. Water absorption (%) 93-118 103 (7)                                      |  |
| 6. Unsoaked seed (%) 0 0                                                    |  |
| 7. Test weight (lb/Bu)57.4-63.961 (20)                                      |  |
| 8. 1000 seed weight (g) 268-556 387 (82)                                    |  |
| Starch Properties                                                           |  |
| 1. Peak viscosity (RVU) 143-202 178 (15)                                    |  |
| 2. Hot paste viscosity (RVU) 139-179 156 (11)                               |  |
| 3. Break down (RVU) 6 47 23 (11)                                            |  |
| 4. Cold paste viscosity (RVU) 237-392 292 (46)                              |  |
| 5. Setback (RVU) 85-213 136 (40)                                            |  |
| 6. Peak time (min) 8.8-12.5 9.9 (1)                                         |  |

# Table 22. Mean protein and starch content fordifferent chickpea cultivars grown in the USA, 2011.

| Genotype     | Protein (%) | Total starch (%) |
|--------------|-------------|------------------|
| CDC Frontier | 21          | 46               |
| Pedro        | 19          | 39               |
| Troys        | 20          | 44               |
| HB-14        | 19          | 40               |
| Bronic       | 24          | 38               |
| Billy Beans  | 23          | 36               |
| Sierra       | 21          | 39               |
|              |             |                  |

### Chickpea Micronutrients

US grown chickpea are a good source of iron, zinc, calcium, magnesium, potassium, and selenium. Concentrations of each mineral micronutrient are given in Table 24. Similar to dry pea and lentils, chickpea is also low in phytic acid and a good source beta-carotene.

### Mineral nutrient levels of chickpea cultivars (Table 25)

All genotypes had similar levels of mineral micronutrients, phytic acid, and beta-carotenes, with the exception of selenium levels in cultivar Troys. CDC Frontier had higher iron and selenium contents compared to the other cultivars.

Please note that due to the small number of samples, no location details are provided for chickpea mineral micronutrients.

#### Table 23. Mean canning quality of USA grown chickpeas.

| Quality Attributes | Sierra | CDC<br>Frontier | Unknown-<br>Kabuli type |
|--------------------|--------|-----------------|-------------------------|
| L*                 | 53.4   | 52.5            | 53.4                    |
| a*                 | 4.7    | 5.7             | 6.0                     |
| b*                 | 15.5   | 15.2            | 16.6                    |
| Clumping (1-5)     | 0      | 0               | 0                       |
| Splitting (1-5)    | 0      | 1               | 1                       |
| Turbidity (1-5)    | 2      | 2               | 2                       |
| Overall (1-5)      | 1      | 1               | 1                       |

# Table 24. Mean micronutrient concentrations in chickpea grown in the USA, 2011.

| Micronutrient            | Chickpea   |
|--------------------------|------------|
| Iron (mg/kg)             | 43 (4)     |
| Zinc (mg/kg)             | 24 (2)     |
| Calcium (mg/kg)          | 645 (82)   |
| Magnesium (mg/kg)        | 906 (72)   |
| Potassium (mg/kg)        | 6611 (406) |
| Selenium (µg/kg)         | 361 (280)  |
| Phytic acid (mg/g)       | 4.8 (1)    |
| Beta-carotene (µg/100 g) | 294 (213)  |

#### Table 25. Mean nutritional quality of chickpea cultivars grown in the USA, 2011.

|              | Iron  | Zinc  | Calcium | Magnesium | Potassium | Selenium | Phytic acid |
|--------------|-------|-------|---------|-----------|-----------|----------|-------------|
| Genotype     | mg/kg | mg/kg | mg/kg   | mg/kg     | mg/kg     | µg/kg    | mg/g        |
| CDC Frontier | 47    | 25    | 651     | 947       | 6848      | 582      | 5.0         |
| Pedro        | 38    | 25    | 561     | 882       | 6675      | 179      | 5.0         |
| Troys        | 42    | 24    | 779     | 900       | 6742      | 82       | 5.1         |
| HB-14        | 39    | 22    | 651     | 834       | 6271      | 122      | 4.5         |
| Bronic       | 42    | 26    | 500     | 839       | 6084      | 204      | 5.4         |
| Billy Bean   | 38    | 20    | 706     | 783       | 5822      | 165      | 4.8         |
| Sierra       | 40    | 24    | 701     | 949       | 6724      | 117      | 5.0         |

# Percentage Recommended Daily Allowance

The percentage recommended daily allowance (%RDA) provides an indication of the nutrient concentration of a food item. Based on a 50 g serving for both adult males and females 19-50 years of age, US grown field pea, lentil, and chickpea could be considered good sources of selenium, iron, zinc, and magnesium. This conclusion is based on 64 samples grown in 2011. The actual levels of each nutrient vary based on growing location, genotype, year, and number of samples used to determine mineral micronutrient levels. The %RDA for US grown dry pea, lentil, and chickpea from 2011 for adults ages 19-50 years are given in Table 26.

## Table 26. Percent recommended daily allowance (RDA) of minerals in a 50 g serving of pulses.

|           | %RDA in a 50 g of serving of pulses for adults (19-50 yrs) $^{\dagger}$ |                |                   |                 |                  |                              |                  |                    |                            |  |
|-----------|-------------------------------------------------------------------------|----------------|-------------------|-----------------|------------------|------------------------------|------------------|--------------------|----------------------------|--|
|           | Selenium                                                                | Iron           |                   | Zinc            |                  | Calcium                      | Magnesium        |                    | Potassium*                 |  |
| Сгор      | Male/<br>Female<br>(55 μg)                                              | Male<br>(8 mg) | Female<br>(18 mg) | Male<br>(11 mg) | Female<br>(8 mg) | Male/<br>Female<br>(1000 mg) | Male<br>(410 mg) | Female<br>(310 mg) | Male/<br>Female<br>(4.7 g) |  |
| Field pea | 36                                                                      | 25             | 11                | 11              | 15               | 2                            | 9                | 13                 | 6                          |  |
| Lentil    | 49                                                                      | 36             | 16                | 13              | 18               | 3                            | 9                | 12                 | 6                          |  |
| Chickpea  | 33                                                                      | 27             | 12                | 11              | 15               | 3                            | 11               | 15                 | 7                          |  |

†%RDA and AI were calculated based on www.nap.edu (Food and Nutrition Board, Institute of Medicine and National Academies; http://fnic.nal.usda.gov)

\*Adequate Intake (AI)

### Authors

**Dr. Dil Thavarajah,** Assistant Professor, Pulse Quality and Nutrition, School of Food Systems, North Dakota State University, Dept. 7640, 223 Harris Hall, P.O. Box 6050, Fargo, ND, USA 58108-6050.

**Dr. Pushparajah Thavarajah**, Assistant Professor, Food Chemistry, School of Food Systems, North Dakota State University, Dept. 7640, 223 Harris Hall, P.O. Box 6050, Fargo, ND, USA 58108-6050.

### Pulse Quality Technical Assistance

**Ms. Nancy Hillen,** Commodity Quality Specialist, School of Food Systems, Pulse Quality and Nutrition, NDSU.

**Ms. Darshika Amarakoon** (MSc candidate), School of Food Systems, Pulse Quality and Nutrition, NDSU.

**Mr. Casey Johnson** (MSc candidate), School of Food Systems, Pulse Quality and Nutrition, NDSU.

**Mr. Dale Hanson** (Part Time Technical support), School of Food Systems, Pulse Quality and Nutrition, NDSU.

## **Funding Support**

Northern Pulse Growers Association North Dakota State University USA Dry Pea Lentil Council

### Acknowledgements

The 2011 U.S. Pulse Quality Report acknowledges support received from Progene Plant Research, Othello, WA, USDA-ARS (Wheat Quality Group) Fargo, ND, and School of Food Systems, Northern Crops Institute, and College of Agriculture, Food Systems and Natural Resources of North Dakota State University.

Please direct questions, comments, suggestions, or requests for copies of this report to Dr. Dil Thavarajah (dilrukshi.thavarajah@ndsu.edu) at North Dakota State University, Ms. Shannon Berndt (berndt@northernpulse.com) at Northern Pulse Growers Association, and Mr. Todd Scholz (scholz@pea-lentil.com) at the USA Dry Pea and Lentil Council.

### References

American Association of Cereal Chemists, 2000. Approved methods of the AACC 10<sup>th</sup> edition.

Katrangi et al., Journal of Lipid Research Volume 25, 1984.

Uebersax and Hosfield, 1985. Michigan State University, East Lansing.

National Pulse Quality Survey Report 2010, Northern Crop Institute, Fargo, ND

Northern Pulse Growers Association, Bismarck, ND http://www.northernpulse.com.

RVA-4 Series Operation Manual, Newport Scientific Pty. Ltd. 1995.

- Thavarajah et al. 2008. Journal of Agricultural and Food Chemistry 56(22), 10747-10753.
- Thavarajah et al. 2009a. Journal of Agricultural and Food Chemistry 57, 5413-5419.
- Thavarajah et al., 2009b. Journal of Agricultural and Food Chemistry 57: 9044-9049.

Thavarajah et al., 2011. Euphytica, 180 (1): 123-128.

USA Dry Pea Lentil Council, 2012; http://www.pea-lentil.com/.



info@northernpulse.com www.northernpulse.com

## USA Dry Pea Colory Lentil Council

USA Dry Pea & Lentil Council 2780 W Pullman Road, Moscow, ID 83843 208-882-3023 F-208-882-3023 pulse@pea-lentil.com www.pea-lentil.com www.cookingwithpulses.com

# NDSU NORTH DAKOTA STATE UNIVERSITY

Dr. Dil Thavarajah dilrukshi.thavarajah@ndsu.edu